
AD-AiSS 638 RESPONDING TO SEMANTICALLY ILL-FORM4ED INPUT(U) NEU YonE i/wiIV NY CONANUT INST OF MATHEMATICAL SCIENCES
R GRISH4NRN ET AL SEP 87 PROTEUS-M-7-A NM1t4-85-K-0163

UNCLASSIFIED F/G 5/7 NI

ENOEEEEE



L. 3 2 I L
1.*36 Im'-2

II14. 1.1112.0~~JJJ U

IIME



Co

00
0o

I'N

PRO ECT

"Lsib" bowSgui ~ ~ K T

" Wft

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University



Aeoossion For

NTIS GRA&I

DTIC TAB 0
Uannounced

Responding to Semantically Ill-formed Input JIW!,tIo

Ralph Grishman and Ping Peng B i

Computer Science Department Distribution/New York University Availability Codes
251 Mercer Street

New York, NY 10012 Avail and/or
Dist Special

ABSTRACT
One cause of failure in natural language interfaces is semantic overshoot; this is reflected in input
sentences which do not correspond to any semantic pattern in the system. We describe a system
which provides helpful feedback in such cases by identifying the "semantically closest" inputs
which the system would be able to understand.

Drtc
Copy

VN8PEC

1. Introduction

Natural language interfaces have achieved a limited success in small, well circumscribed
domains, such as query systems for simple data bases. One task in constructing such an interface
is identifying the relationships which exist in a domain, and the possible linguistic expressions of
these relationships. As we set our sights on more complex domains, it will become much harder
to develop a complete or nearly complete catalog of the relevant relationships and linguistic
expressions; substantial gaps will be inevitable. In consequence, many inputs will be rejected
because they fail to match the semantic/linguistic model we have constructed for the domain.

We are concerned with the following question: what response should we give a user when
his input cannot be analyzed for the reasons just described? The response "please rephrase"
gives the user no clue as to how to rephrase. This leads to the well-known "stonewalling"
phenomenon, where a user tries repeatedly, without success, to rephrase his request in a form the
system will understand. This may seem amusing to the outside observer, but it can be terribly
frustrating to the user, and to the system designer watching his system being used.

We propose instead to provide the user with sentences which are semantically close to the
original input (in a sense to be defined below) and are acceptable inputs to the system. Such
feedback may occasionally be confusing, but we expect that more often it will be helpful in
showing the system's capabilities and suggesting possible rephrasings. *--

In the remainder of this abstract we briefly review the prior work on responding to ill-
formedness, describe our proposal and its implementation as part of a small question-answering
system, and relate our initial experiences with this system.

2. Background

o--



2.1. Relative and Absolute Ill-formedness

Weischedel and Sondheimer [Weischedel 1983] have distinguished two types of ill-
formedness: absolute ill-formedness and relative ill-formedness. Roughly speaking, an abso-
lutely ill-formed input is one which does not conform to the syntactic and semantic constraints of
the natural language or the sublanguage; a relatively ill-formed input is one which is outside the
coverage of a particular natural language interface. Our concern is primarily with relative ill-
formedness. For complex domains, we believe that it will be difficult to create complete seman-
tic models, and therefore that relatively ill-formed input will be a serious problem -- a problem
that it will be hard for users to remedy without suitable feedback.

2.2. Syntactic and Semantic Ill-formedness
Earlier studies have examined both syntactically and semantically ill-formed input. Among

the work on syntactically ill-formed input has been EPISTLE [Miller 19811, the work of
Weischedel and Sondheimer [Weischedel 1981, Kwasney 1981, and Weischedel 1983], and Car-
bonell and Hayes [Carbonell 1983]. Some of this work has involved the relaxation of syntactic
constraints; other (such as Carbonell and Hayes) a reliance primarily on semantic structures
when syntactic analysis fails. Our system has been primarily motivated by our concern about the
possiblity of constructing complete semantic models, so we have focussed to date on semantic
ill-formedness, but we believe that our system will have to be extended in the future to handle

*_ syntactic ill-formedness as well.

2.3. Error Identification and Correction
For some applications, it is sufficient that the point of ill-formedness be identified, and the

constraint be relaxed so that an analysis can be obtained. This was the case in Wilks' early work
on "Preference Semantics" [Wilks 1975], which was used for machine translation applications.
In other applications it is necessary to obtain an analysis conforming to the system's semantic
model in order for further processing of the input to take place, in effect "correcting" the user's
input. This is the case for data base query (our current application), for command systems (such
as MURPHY [Selfridge 19861), and for message entry systems (such as NOMAD [Granger 1983]
and VOX [Meyers 1985]).

2.4. System Organization
Error correction can be provided either by making pervasive changes to a set of rules, or by

providing uniform correction procedures which work with a standard (non-correcting) set of
rules. In the syntactic domain, EPISTLE is an example of the former, the metarule approach
[Weischedel 1983] an example of the latter. We feel that, particularly for semantic correction, it
is important to take the "uniform procedure" approach, since a semantic model for a large domain
will be difficult enough to build and maintain without having to take the needs of a correction
mechanism into account. It is equally important to have a procedure which will operate on a sys-
tern with separate syntactic and semantic components, so that we may reap the advantages of
such an organization (conciseness, modularity). The NOMAD system used procedures associated
with individual words and so was very hard to extend [Granger 1983, p. 195]; the VOX system
remedied some of these defects but used a "conceptual grammar" mixing syntactic and semantic
constraints [Meyers 1985]. The MURPHY system [Selfridge 1986] is most similar to our own
work in terms of the approach to semantic constraint relaxation and user feedback; however, it
used a syntactic representation which would be difficult to extend, and required weights in the
semantic model for the correction procedure.

In addition to the shortcomings of the systems just described, we felt it important to develop
and test a system in order to gain experience in the effectiveness of these correction techniques.
Although (as just noted) many techniques have been described, the published reports contain

.2-

@4



V.

virtually no evaluation of the different approaches.

3. System Overview

Our feedback mechanism is being evaluated in the context of a small question-answering
system with a relatively standard structure. Processing of a question begins with two stages of
syntax analysis: parsing, using an augmented context-free grammar, and syntactic regularization,
which converts the various types of clauses (active and passive; interrogative, imperative, and
declarative; relative and reduced relative; etc.) into a canonical form. In this canonical form,
each clause is represented as a list consisting of: tense, aspect, and voice markers; the verb (root
form); and a list of operands, each marked by "subject", "object", or the governing preposition.
For example, "John received an A in calculus." would be translated to

(past receive (subject John) (object A) (in calculus))
Processing continues with semantic analysis, which translates the regularized parse into an
extended-predicate-calculus formula. One aspect of this translation is the determination of
quantifier scope. Another aspect is the mapping of each verb and its operands (subject, objects,
and modifiers) into a predicate argument structure. The predicate calculus formula is then inter-
preted as a data base retrieval command. Finally, the retrieved data is formatted for the user.

The translation from verb plus operands to predicate plus arguments is controlled by the

model for the domain. The domain vocabulary is organized into a set of verb, noun, adjective,
and adverb semantic classes. The model is a set of patterns stated in terms of these semantic
classes. Each pattern represents one combination of verb and operands which is valid (meaning-
ful) in this domain. For example, the pattern which would match the sentence given just above is

(v-receive (subject student) (object ngrade) (in ncourse))
where v-receive is the class of verbs including receive, get, etc.; nstudent the class of students;
ngrade the class of grades; and ncourse the class of course names. Associated with each pattern
is a rule for creating the corresponding predicate-argument structure.

4. The Diagnostic Process

In terms of the system just described, the analysis failures we are concerned with
correspond to the presence in the input of clauses which do not match any pattern in the model.
The essence of our approach is quite simple: find the patterns in the model which come closest to
matching the input clause, and create sentences using these patterns. Implementation of this
basic idea, however, has required the development of several processing steps, which we now
describe.

Our first task is to identify the clauses to which we should apply our diagnostic procedure.
Our first impulse might be to trigger the procedure as soon as we parse a clause which doesn't

* match the model. However, the process of matching clause against model serves in our system to
check selectional constraints. These constraints are needed to filter out, from syntactically valid
analyses, those which are semantically ill-formed. In a typical query we may have several
semantically ill-formed analyses (along with one well-formed one), and thus several occasions of
failure in the matching process before we obtain the correct analysis.

We must therefore wait until syntax analysis is complete and see if there is any syntactic
analysis satisfying all selectional constraints. If there is no such analysis, we look for an analysis
in which all but one clause satisfies the selectional constraints; if there is such an analysis, we
mark the offending clause as our candidate for diagnostic processing.

Next we look for patterns in the model which "roughly match" this clause. As we explained
above, the regularized clause contains a verb and a set of syntactic cases with case labels and
fillers; each model pattern specifies a verb class and a set of cases, with each case slot specifying
a label and the semantic class of its filler. We define a distance measure between a clause and a

-3.



pattern by assigning a score to each type of mismatch (clause and pattern have the same syntactic
case with different semantic classes; clause and pattern include the same semantic class but in
different cases; clause has case not present in pattern; etc.) and adding the scores. We then
select the pattern or patterns which, according to this distance measure, are closest to the offend-

"or ing clause.
We now must take each of these patterns and build from it a sentence or phrase the user can

understand. Each pattern is in effect a syntactic case frame, with slots whose values have to be
filled in. If the case corresponds to one present in the clause, we copy the value from the clause;
if the case is optional, we delete it. Othewise we create a slot filler consisting of an indefinite
article and a noun describing the semantic class allowed in that slot (for example, if the pattern
allows members of the class of students in a slot, we would generate the filler "a student"). When
all the slots have been filled, we have a structure comparable to the regularized clause structure
produced by syntactic analysis.

Finally each filled-in pattern must be transformed to a syntactic form parallel to that of the
original offending clause. (If we don't do this -- if, for example, the input is a yes-no question
and the feedback is a declarative sentence -- the system output can be quite confusing.) We iso-
late the tense, voice, aspect, and other syntactic features of the original clause (this is part of the
syntactic regularization process) and transfer these features to the generated structure. If the

* offending clause is an embedded clause in the original sentence, we save the context of the
offending clause (the matrix sentence) and insert the "corrected" clause into this context. We
take the resulting structure and apply a sentence generation procedure. The generation procedure,
guided by the syntactic features markers, applies "forward" transformations which eventually
generate a sentence string. These sentences are presented as the system's suggestions to the user.

5. Examples

The system has been implemented as described above, and has been tested as pant of a
question-answering system for a small "student transcript" data base. The syntactic model
currently has patterns for 30 combinations of verbs and arguments. While the model has been
gradually growing, it still has sufficient "~gaps"~ to give adequate opportunity for applying the
diagnostics.

A few examples will serve clarify the operation of the system. The system has models
(take (subject student) (object course))

and
I, (offer (subject school) (object course))

but no model of the form
(offer (subject student) (object course))

Accordingly, if a user types
Did any students offer V II?

(where VI I is the name of a course), the system will respond
Sorry, I don't understand the pattern

(students offer courses)
and will offer the "suggestions"

Did any students take V II?
and

Did some school offer VlI I?
Prepositional phrase modfiers are analyzed by inserting a "be" and treating the result as a

relative clause. For example, "students in VIiV would be expanded to "students [such that] [stu-
dents] be in VI V. If the resulting clause is not in the semantic model, the usual correction pro-
cedures are applied. As part of our policy of limiting the model for testing purposes, we did not
include a pattern of the form

.4-



(be (subject student) (in course))
but there is a pattern of the form

(enroll (subject student) (in course))
(for sentences such as "Tom enrolled in VI "). Therefore if the user types

List the students in VIi1.
the system will generate the suggestions

List the students who enroll in Vi11.
and

List the students.
(the second suggestion arising by deleting the modifier).

6. Current Status
The system has been operational since the summer of 1986. Since that time we have been

regularly testing the system on various volunteers and revising the system to improve its design
and feedback. We instructed the volunteers to try to use the system to get various pieces of infor-
mation, rather than setting them a fixed task, so the queries tried have varied widely among users.

The experimental results indicate both the strength and weakness of the technique we have
described. On the one hand, semantic pattern mismatch is not the primary cause of failure; voca-
bulary overshoot (using words not in the dictionary) is much more common. In a series of tests
involving 375 queries (by 8 users), 199 (53%) were successful, 95 (25%) failed due to missing
vocabulary, 22 (6%) failed due to semantic pattern mismatch, and 59 (16%) failed for other rea-
sons. On the other hand, in cases of semantic pattern mismatch, the suggestions made by the sys-
tem usually include an appropriate rephrasing of the query (as well as some extraneous sugges-
tions). Of the 22 failures due to semantic pattern mismatch (in both series of tests), we judge that
in 14 cases the suggestions included an appropriate rephrasing.

7. Assessment
These results, while not definitive, suggest that the technique described above is a useful

one, but will have to be combined with other techniques to forge a general strategy for dealing
with problems encountered in interpreting the input. In particular, we will have to extend our
technique to deal with input containing unknown words. It should be possible to do this in a
straightforward way by adding dictionary entries for the closed syntactic classes, guessing from
morphological clues the syntactic class(es) of new words not in the dictionary, obtaining a parse,
and then applying the techniques just described (with a new word treated as a semantic unknown,
not belonging to any class).

Our system only offers suggestions; it does niot aspire to correct the user's input. That
would be an unreasonable expectation for our simple system, which does not maintain any user or
discourse model. Our current system typically generates several equally-rated suggestions for an
ill-formed input. For a more sophisticated system which does maintain a richer model, correction
may be a feasible goal. Specifically, we might generate the suggested questions as we do now
and then see if any question corresponds to a plausible goal.



8. References

[Carbonell 1983]
J. G. Carbonell and P. J. Hayes, Recovery Strategies for Parsing Extragrammatical
Language. Am. J. Computational Linguistics 9 (3-4), 1983, pp. 123-146.

[Granger 19831
R. H. Granger, The NOMAD System: Expectation-Based Detection and Correction of
Errors during Understanding of Syntactically and Semantically ill-Formed Text. Am. J.
Computational Linguistics 9 (3-4), 1983, pp. 188-196.

[Kwasney 1981 ]
S. C. Kwasney and N. K. Sondheimer, Relaxation Techniques for Parsing rn-Formed Input.
Am. J. Computational Linguistics 7, 1981, pp. 99-108.

[Meyers 1985]
A. Meyers, VOX -- An Extensible Natural Language Processor. Proc. IJCAI-85, Los
Angeles, CA, pp. 821-825.

-[Miller 1981]
L.A. Miller, G. E. Heidom, and K. Jensen, Text-critiquing with the EPISTLE System: An
Author's Aid to Better Syntax. In Proc. Nat'l Comp. Conf., AFIPS Press, Arlington, VA,

'5; 1981, pp. 649-655.

[Selfridge 19861
M. Selfridge, Integrated Processing Produces Robust Understanding, Computational
Linguistics 12 (2), 1986, pp. 89-106.

[Weischedel 1980]
R. M. Weischedel and J. E. Black, Responding Intelligently to Unparsable Inputs. Am. J.
Computational Linguistics 6 (2), 1980, pp. 97-109.

[Weischedel 1983]
R. M. Weischedel and N. K. Sondheimer, Meta-rules as a Basis for Processing rn-Formed
Input. Am. J. Computational Linguistics 9 (3-4), 1983, pp. 161-177.

[Wilks 1975]
Y. Wilks, An Intelligent Analyser and Understander of English. Comm. ACM 18, 1975, pp.

, 264-274.

-p-6



.qM

.t-4

A.-

A.

A.

* e

/42D
'A

4

I.
S.

.4~ 6- U-U S S I S 6 * ~ *.-* w~.-.


